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Expressions are given for the potential energy, the forces, and the virial in a computer
ensemble of N polarizable point dipoles. An iterative scheme for use in molecular dynamics
calculations is tested.

1. INTRODUCTION

In molecular dynamics calculations on systems of dipolar molecules [1-4] polar-
ization effects have generally been disregarded, or treated only in an ad hoc manner by
the introduction of “effective” dipole moments [3, 4]. The only exception is a tentative
study by Berendsen [5] on a rather complicated system, namely a polarizable BNS [3]
water model. In the new and very promising central force model of Lemberg and
Stillinger [6] polarizability is implicitly accounted for, but it is difficult to discern its
effects from those of other model parameters.

While the effective dipole approach, with suitably chosen effective moments, may
yield a good approximation to the correct equilibrium properties, it cannot a priori
be expected to account equally well for the dynamics and the dielectric properties
of a polarizable dipole system.

By way of a systematic approach to this problem one should start out by studying
a very simple “Stockmayer-type” system consisting of spherical molecules (e.g.,
Lennard-Jones) with embedded polarizable point dipoles. Since the spherical sym-
metric part of the potential is irrelevant for our purposes, only the dipolar part is
considered in the following sections.

The numerical calculation of the many-particle dynamics of polarizable dipole
molecules is complicated by the fact that the convenient assumption of pairwise
additive interactions is no longer valid. It is therefore necessary at each time step first
to compute all induced dipoles in a self-consistent way before one can determine all
the quantities that appear in the equations of motion and in the molecular expressions
for the thermodynamic functions.

In Section 2 expressions are given for the potential energy, the force on one particle,
and the virial in a system of N polarizable point dipoles. These formulas are then
modified by long-range correction terms, so as to be applicable in computer experi-
ments on pseudoinfinite samples. Specific schemes for calculating the induced dipoles
for a given configuration are discussed, and the rate of convergence of an iterative
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procedure is tested in Section 3. The performance of the iterative method in an actual
molecular dynamics calculation is studied in Section 4. In the last section prospects
and problems of molecular dynamics calculations on such a system are discussed.
2. POTENTIAL ENERGY, FORCES, AND VIRIAL
Consider a configuration of N point dipoles with a set of spatial coordinates

r = {ry *'* Iy}, rigid dipole vectors p = {p, -*' px}, and a constant polarizibility «.
The induced dipoles are then given by

Ap; = oE; = o), Ty(p; + 4p;) = « Y, T.;pi*, H
7 3

where E; is the local electrostatic field at point ,

7 1 1 3r1,
T = 75 —‘7’5—’ - 1] ’

i i )
T-"ii = O’

is the dipole—dipole tensor, and p,;* denotes the total (resultant) dipole vector of
particle j.
The total potential energy of the system is given by

Uot(r, p) = —3 Y. Y p*Tups* + (1/20) Y, dp2
¢4 i (3)
%} piEz [}

where the term (1/20) 3; dp? = (a/2) 3°; E2 = Upo1 denotes the work of formation
of the induced dipoles. 1t is important to note that the generalized function

Uz,r,p) = —1% Z ; ®: + z) Tis(p; +2)) + (1/20) Z z? @
for given r and p is minimized by the choice
z; = Adpr,p) = a; T.p; +4p), i=1,.,N.
By definition of U this minimum coincides with Usot(r, p)

U[Ap(l', p)5 r, P] = Utot(l', p)

For the force acting on particle £ we have, in an obvious notation,

d ozp 1 @
K== 5 U — L% T |77 Ve rp) . )
3 i

z=4p(r.p)
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Due to the minimum property of U(z, r, p) the second term vanishes, and we get
Ky=2K,=X LT, (6)
5

with

T = (SBVx“ + &vexf, 4 8xy) — x"‘ X8 XY ™
)

ki ki *
Ic

The virial of our system for a given configuration is

—% z Z Z KVJX;J = —% Z Z pk*Tkipi* = 3(Ut°t - Upol) (8)
kE i v k j

Energy, force, and virial, together with the torque on particle &,
N =pe X E; ®

are all that is needed for a molecular dynamics calculation on the system under
consideration. The above expressions, however, are not yet suitable for numerical
work on a “pseudoinfinite” molecular dynamics system which consists of periodic
boxes containing typically N =~ 100-1000 molecules. In computer experiments on
molecules with short-ranged potentials the interactions of a given particle with the
others are explicitly calculated only up to a certain cutoff distance, while the long-range
part is dealt with by way of a simple correction term. Due to the slow (1/r®) radial
decay of the dipole—dipole potential the long-range correction is rather large in this
case and must be constructed with some care. In the framework of rigid dipole
calculations two methods have been proposed to deal with this problem: one is the
Ewald-Kornfeld summation method, in which the volume containing N dipoles is
regarded as a basic crystallographic element in an infinite “crystal”; the interactions
of a given dipole with all the others within the basic cell and with all the periodic
images of all dipoles is then expressed in terms of two rapidly converging series [7, 8].
The suspicion, however, that this method overemphasizes the artificial periodicity
of the computer ensemble has not yet been disproved [8]. Moreover, the evaluation
of the said series is still a rather tedious task. (Smith and Perram [9] have recently
proposed a numerical method which may serve to improve things in this respect.) The
other method of correcting for the long-range interactions has been introduced by
Barker and Watts in their Monte Carlo work on water [10]. Drawing from the Onsager—
Debye theory of dielectrics, it treats the surroundings of the cutoff sphere as a dielectric
continuum (with properly estimated dielectric constant «,) which is polarized by the
total dipole moment of the truncation sphere. This polarization then creates an
additional “‘reaction field” R; within the sphere around particle 7, and it is the inter-
action of the dipole i with this reaction field which is hoped to properly account for the
interaction with the further-out regions of our system. If we regard the reaction field
as an instantaneous effect, this concept can also be applied to a molecular dynamics
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ensemble of dipoles [11]. The generalization to polarizable dipoles presents no serious
problem: The reaction field within the cutoff sphere of radius r¢o is

20— 1) 1

s = * = ———
R;=a ) p*,  wherea 20T 1 7T (10)

JES;

and where the sum is over all dipoles within the cutoff sphere, including the central
dipole i. The resultant field E; is then

E,=a) T;p*+Ri= Y Ty+ a)p* (11

je 8 ies;

and the induced dipoles are now

dp; = a Y, (Ty + a) p;*. (12)
jes;
The total potential energy is
Usot = -—%ZP.E =—%Y Y pTs + A p* (13)
i jes;

The force on the central particle i is not changed by the reaction field, which by
construction is homogeneous within the cutoff sphere

Kv — Z Z Zp *Taﬂ '/p]*B (14)

jes; «

If we take (13) to be a good approximation to the exact potential energy, we
can simply insert (13) into (8) to get for the virial

W=—4} Y pdTs+ @) p* — (3/20) 3. dps

i jes;

=—3Y 3 pTi + o) p,* — (30/2) Z Ez2 15)

i jes;

The torque on particle 7 is, of course, given by

Ni=PiXEi=Pix[z (Tﬁ+a)Pj*:|' (16)
jeS;
3. CALCULATION OF THE INDUCED DIPOLES

The actual calculation of the induced dipoles dp; (or, equivalently, of the local
fields E;) for given r and p can be achieved in two different ways.
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(a) Algebraically, by solving the equations

dp;=o Yy (Ty+a)p; +a ) (Ty+ a) dp; (12a)

ies; eS8,

or, formally,
dp = /p an
with
o = o[l — T + a)I"HT + a).

Considering that & is a 3N X 3n-matrix, with typical values of N ~ 100 and » ~ 50
(number of particles within a cutoff sphere), it was not attempted to carry through
such a calculation; however, & is highly symmetrical and Eq. (17) may well be
treatable.

(b) In a more simple and intuitive way, by seeking an iterative solution to (17).
As starting values one may choose 4p; = 0. Another choice, which is more suitable
for use in molecular dynamics calculations, would be p,*(¢) = p,*(r — 4t), the
resultant dipole vector at the previous time step.

- g >
B, = (Tyy + @) (Fy + 83y

FIGURE 1

The convergence properties of the simple iterative procedure shown in Fig. 1 was
tested, using a random configuration of 108 Stockmayer particles. The “rigid Stock-
mayer” molecular dynamics program used to create this configuration was made
available to me by D. Adams. State parameters pertaining to the test configuration
were the following: reduced density g (=(N/V)o® = 0.7, reduced temperature T
(=T(k[¢)) = 1.19 and reduced dipole moment  (=p/(es®)}/?) = 1. Always using the
same rigid dipole directions and relative positions of the particles 15 iterations were
performed for each of the six states 5 = 0.6/0.7/0.8, § = 1, & (=(o/0®)) = 0.05/0.10.
In addition, the rather extreme case § = 0.8, p = 1, & = 0.15 was studied in an
analogous way. Taking the Lennard-Jones parameters of argon (e = 1.653 - 10~ erg,
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o = 3.405 A) as an example, p = 1 is equivalent to a dipole moment of 0.808 D,
and & = 0.05 would imply « = 1.97 - 10-2* cm3. After each iteration n the values of

Si(n) = Z | Ei(n) — Ei(n — DJ?

and N
Sy(n) = Z E?(n)

i=1
were printed. The quantity Rg(n) = S,(n)/Sy(n) was used as a measure for the accuracy
achieved after step n (it should be understood that » = 0 denotes the initial step).
It is evident from Fig. 2 that In Rg(n) becomes an approximately linear function of »n
after a few iterations, and that the rate of descent depends weakly on density and
strongly on the polarizability & For the different states under study the number of
iterations needed to achieve an accuracy of Ry = 10~ are listed in Table I. In the
“unphysical” case & == 0.15 no convergence was achieved within 20 iterations. As
cross-checks have shown, the results given in Fig. 2 and Table T are well reproduced
when different rigid dipole configurations are used.

n

-4, a) . b

_8:1 . :I '..

InRg

-20]

241 N A .

-4} .
: c) L d)

-20
Fic. 2. Logarithm of relative error of the field after » iterations; (a) 5 = 0.6, (b) § = 0.7, (c) and

(d) = 0.8; triangles: & = 0.05, dots: & = 0.10 (& = 0.15 in case (d)). The vertical bar denotes the
region 104 < Rp < 4 - 104,
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TABLE I

Number of iterations necessary to reach Rg < 10~ if dp; (n = 0) = 0;

limiting slope k« of In Rg

367

a = 0.05 & = 0.10
ﬁ n kw n ko
0.6 3 —2.76 5 —1.19
0.7 34 —2.35 7 —0.85
0.8 4 —2.13 9 —0.61
B} = p; (at time 0)
or
B: = Bi(t-at)
(at time t)
1
e
E, =0
1
1
IT = 0
et 2 >
E{ = ] (Ty5 + a)ps
jeS;
- >y - 2
8y = E (E; - Ep)
et ]
S, = z E.2
2 g1
I
fir=1T+1 |
i
£, = EJ
1 2
Bi = By +of;
<
RETURN
>

FIGURE 3
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The formulas given in Section 2 together with the iterative procedure provide the
means for computer experiments on polarizable dipolar molecules. In the framework
of an actual molecular dynamics program the loop of Fig. 1 is to be replaced by the
subroutine of Fig. 3.

We have seen that the iteration scheme converges quite rapidiy for reasonable
values of &, even if we take Ap, = 0 as initial values. Convergence will be much faster
within a molecular dynamics run where we have a better estimate on 4dp;, or p;*,
to start with. The proximity of p,*(t — 4¢) to p,*(¢), and therefore the speed of
convergence to some required accuracy, will depend on the size of the time step,
on temperature, on mass and moment of inertia of the particles, etc. We can obtain
an estimate on the number of iterations needed if we assume that the typical change
in E; during one time step will not exceed, say, 2% of the average value of | E; |
(otherwise the time step would be too large anyway). Further assuming, for the sake
of argument, that all local fields are independent, we have

| 4;1 = | Et) — Et — 40| < 0.02(1/N) ¥ | E; | < 0.02 ((I/N)Z Eiz)l/z

or
42 < 0.0004(1/N) Z Ez2.
Thus,

_S(1) 342
RE(l) - Sz(l) — ZEiz <0-(X)04.

It is evident from Fig. 2 that in this situation only one (for & = 0.05) or two (for
& = 0.10) iterations are necessary to improve the accuracy to Ry << 104,

Experience with preliminary molecular dynamics calculations has shown that the
above estimates are in fact too pessimistic: Values of Rg(1) are typically much lower,
in some cases even below 104,

It should be mentioned that other cutoff conditions than Ry << 10— could be used.
In order to calculate the dynamics of each particle accurately to 1% a suitable
condition would be

| Ey(n) — Ei(n — D) -
AT TR )] < 107

but the rapid convergence renders such considerations unimportant, and the simple
prescription given in Fig. 3 should suffice in all practical applications.
4. PERFORMANCE TESTS
The iteration subroutine of Fig. 3 was incorporated in Adams’ molecular dynamics

program, and the performance of the method was tested in a series of trial runs.
These calculations, as well as the static tests of Section 3, were done on the Vienna
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Interuniversitary Computing Center’s CDC-CYBER 74, and required approximately
1 sec per iteration. The time step used was At == 0.016(mao?/40¢)'/2, and the moment
of inertia was I = mo?/40.

Starting from a specific ““thermalized” configuration, the polarizable Stockmayer
system was followed for 100 time steps, the cutoff accuracy being set to R, < 104,
It was found that for the state 3 = 0.7, ' = 1.158, 5 = 1, & = 0.05 the mean number
of iterations per time step was only slightly larger than 1, and the actual mean accuracy
was (Rg) = 0.34 - 10—,

In a parallel run using the same starting configuration of the particles the cutoff
condition on Ry was removed, and full 10 iterations were performed at each time step.
This resulted in a virtually infinite accuracy (Rg(10) ~ 0.5 - 10-%) and a corresponding
increase in computing time.

The total (kinetic plus potential) energy of the system was monitored and compared
for the two computations. Figures 4a and 4b show the energy and its deviation from
the ““infinite accuracy” value for every fifth time step. (The relatively large energy
fluctuations as well as the slight overall trend are due to “jumps” in the potential
energy whenever a dipole enters or leaves the cutoff sphere of another dipole.) It is
evident that the condition Ry < 10~%, requiring typically 1-2 iterations per time step,
is perfectly sufficient, so that a good approximation to the “real” phase space trajectory
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Fic. 4. (a) Total energy Eiot of the N = 108 polarizable Stockmayer system with § = 1, & =
0.05, 5 = 0.7, T = 1.15. Energy is given in units of ¢ for every fifth time step; straight lines between
points are for convenience. Dots denote the ‘“infinite accuracy” run with 10 iterations, triangles are
for (Rg) = 3.4:- 10-5. (b) Deviation of Eiot from the “infinite accuracy” value.

581/24/4-3
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of the polarizable Stockmayer system can be achieved at only moderate expense in
computer time.

Having assessed the accuracy of the iterative method, a longer computation was
performed to calculate internal energy and pressure of the polarizable Stockmayer
system. State parameters were § = 0.7, T = 1.144, 5 = 1, & = 0.05, and ¢, (for the
reaction field) = 4. In addition, the simple Stockmayer (& = 0) system was studied
using the same values of 5, § and ¢, ; mean temperature was 7' = 1.189 in this case.
Since in molecular dynamics calculations the temperature is not a fixed parameter,
the results had to be corrected for temperature to be comparable with literature values.
The internal energies and pressures given in Ref. [12] suggest that the variation with
temperature of these properties stems mainly from the Lennard—Jones interaction.
Making this assumption and constructing a quadratic fit to literature values of
UL Ne and ppkT at T = 0.75, 1.15, and 1.35, one derives, at T = 1.15, the
gradients d(UY/Ne)/dT = 1.025 and d( pV’/pkT)/dT = 3.674. These were used for a
linear correction, the deviations of temperature from the desired value being small
in both calculations.

Results are given in Table II. Statistical errors are estimated to be +0.05 for U/Ne
and 4-0.10 for p/pkT. Literature values given for comparison are Padé approximations
to perturbation theoretical results and are taken from McDonald [12].

TABLE 1I

Preliminary results for thermodynamic properties of the N = 108 polarizable Stockmayer system
f=07T=115°

No. of U »
p
t — (md — (tpt —— (md —— (tpt
steps Nf(m) Ne(p) ka(m) ka(p)
p=1a=0 1200 —5.59 —5.69 —0.04 0.12
$=1&=005 972 —5.80 —5.80 —0.09 —0.04

4 (md) = results of molecular dynamics calculations; (tpt) = resuits of thermodynamic pertur-
bation theory taken from Ref. [12].

The comparison is encouraging, though not yet conclusive. Deviations are larger
for the simple Stockmayer system than in the polarizable case, and longer runs will be
necessary to clear this point.

5. DiscussioN AND OUTLOOK
The static tests described in Section 3 and the preliminary molecular dynamics runs

of Section 4 have shown that the N-particle dynamics of a simple polarizable dipole
system can be studied in the computer without excessive cost in computer time. In
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fact, it may be sufficient in some cases to calculate the local fields at time ¢ by the
formula

E() = ) (Ti(0) + a) pX(t — 4),

jes;

without performing any iterations at all.

It may be desirable to extend the considerations of Section 2 to cover nonisotropic
and environment-dependent polarizabilities. Nowhere have we made use of the scalar
property of a, so the formulas of Section 2 apply even if « is a tensor quantity. More-
over, all the expressions remain treatable if we try to include the influence of the
interparticle interactions (and especially head-on collisions) on the polarizability,
which can be done by introducing an indexed «; that may vary between different
particles.

For large polarizabilities and temperatures a polarization catastrophe may occur.
The condition for this is

¥ij < (2(!)1/3.

During a collision with a relative kinetic energy of, say, 100¢, two Lennard-Jones
molecules approach each other to a distance of rmin = 0.670. The “catastrophe
condition” on « is then o > 0.150¢% or, again taking argon as an example,
a > 5.92 - 1024 cm?. Since « is typically in the range (1 — 3) - 10~2¢ cm?, a breakdown
of this kind is due to occur at very high temperatures only.
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